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An account is given of one of the methods of solution of the equation
which describes the variation of the radius of a water droplet whose
temperature has become established,

In the very first time interval following introduction
of water droplets into an air medium the temperature
and concentration fields become established. During
this time, as may easily be verified, the droplet ra-
dius may be considered constant.

Following establishment of the temperature and dif-
fusion fields the droplets evaporate or grow at the
psychrometric temperature, and at this stage it is un-
doubtedly necessary to take account of the variation of
radius with time.

This kind of subdivision of the time interval has a
physical basis and is very often applied in the solution
of problems of this kind [1, 2].

The present paper is devoted to solving the equation

for mass transfer through the drop surface, which
equation may be written in the form

dm__ pg%e
dt or —r
or
y-2R__ poe ()
dt or r=R-

The initial condition for (1) is
R = Rn at f=0.

Since pe, generally speaking, is a function of t and r,
we must add to (1) a further equation describing the
density variation for water vapor in air. Bearing in
mind that the problem under consideration is spheri-
cally symmetrical, this equation has the form

dp, *p 2  dp
e pfZlrte g 2 TP} (2)
ot ( ar + r or )

The boundary conditions for (2) are

Pe=py at r =R,

p.=p2 at t=0. (3)

Going over to the function u in (2) and (3) via the
formula

U=rp.,
we obtain
2
ou =D o’u ’ (4)
ot or?
uzpsR at r=R,
u=rpl at t=0. (5)

To solve the problem given by (4) and (5) we shall
examine the equation

It is clear that

V=exp(—ar)’ (6

is one special solution of the equation.

Multiplying the left and right sides of (4) by (6), and
integrating with respect to r over the range R to =,
we obtain after simple transformations

-ai— 5. uexp(—ar)dr—ul—rexp(—akR) %—1} =
-
=—D ( 6u ‘{-au) exp(—aR) +
or r=R
*}Dazj' uexp(—ar)dr. (N
R

Introducing the notation
u= 5 uexp(—ar)dr
R

and supposing that Rea > 0, we bring (7) to the form

exp (D a*#) % exp(— Do) u=

exp(—aR). (8

r=R

du dR
=— (D L Dau—
( or HPau—u dt )

After multiplying (8) by exp (~Dc*t) and then inte-
grating it from 0 to t, we have

— . ‘ du
uexp(— Da t)=——5 DT +Daou-—
r
0

exp(—aR)exp(— D a*#) df -+ u|—o.
r=R

-— U

dR )
dt

Going to the limit as t —< in this last equation and
using the boundary condition (5) and the fact that

(1]
o= ot (14 Ry@)exp(—aRy)
ou ¥ dR
—p. 4L R
o b D N T

we obtain

- dR dR
(5 (Dps+’YR'-—;it—+DCLRPS——RPS—dt——) X (9)
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X exp(—aR)exp(—Dat)dt =

aRy). 9)
{cont'd)

If we examine relatively large drops, it may be con-
sidered that the density of saturated vapors at the drop
surface does not depend on the drop radius and is ap-
proximately equal to the density of saturated vapor
above a plane water surface.

Bringing into consideration a dimensionless param-
eter Ko, defined by the formula

Ko = p./vy,

and taking into account that the quantities p and pg

are commensurate, which means
pov = pKo, (u=pY),

after division by ¥ we may write (9) in the form

j{DKo+R X YD V5 RKo— KoR dR}X
b J
xexp :;fD_R> exp (— sty df =
. 1VDR, _12_) (_ Vs
=xop(F2R 4 D ferp (~ Lor)), (0

s=Da®

We note that the parameter Ko is of the order
1073-107°.

It is expedient to seek a solution of {10) in the form
of a series with respect to Ko:

R=ry+Kor, +Ko?ry+ .. . (11
Giving attention to the initial condition for (1), we shall
consider that the following equalities obtain:
feltmo =Ry Talimo =0 (=1, 2, 3, ). (12)

Putting Ko = 0 in {10) and (11), we obtain for 1, the
equation

yro—fdﬁ—exp(-—l/—;: 7
g dt VD

From the fact that the transform is zero it follows
that the original in the class of continuous functions
must also equal zero. Hence, using (12), we obtain

f0=R0_ (13)

) exp (— sfydf =

After expansion of the exponent in a series, taking
(11) into account, and after equating terms with Ko at
the first power in Eq. (10) we shall have the following
equation for ry

[ (D +Ry+
D

RVD
Vs

+ VDsRy) exp(— st)dt =p ( + %)
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from which it is easy to obtain, following integration,

i, D=1 1
SVS— + Rg 5 .

In the space of the originals, ry has the form
=2VD 1) |/ + D‘f‘““ i (14

Equating coefficients of K& in (10) and transferring
to the originals' space, we obtain, after simple trans-
formations,

71:V—5(H‘1)

f2 2
f2=2f1—— 1 4 = 1 1 df(

— 15
2R, VD Vat dt (19

It follows from (14) that rr, may be written in the
form

) Dw—12 3DVD((p—1y
nro= (u:rn )+ ]{/E(I;L ) X
0
XV7+_22_(H_—_1)2_L' (16)
Rs

Taking (16) into account, the convolution on .the right
side of (15) may be represented as follows:

1 1 % dr} -
2VD Vat di

2VDp—12 1

— 1
7 Vnt* +
3D (p— 1)? 1 —
+ = — 1
VaR, Vni Vit
DVDp—I1p 1
+ R(z) V:r?t— >[<'t. (17)
Since
1 1
— X1 _—
Vnt* 5Ys
1 Va |1
= XVt - .,
n ve 2 s
1 1
—— Xt ,
Vot s$yV's
then it is true that
2 1 Va
— *1"" — t, — * t——._.— ——-t,
]/:n:t V= V— Vat Ve 2
1 4 —
—— Xt = — tV'f. (18)
Vat 3V= 4

Using (14), (17), and (18}, we shall write (15) in the

form

r.

_ 4VD@E—1 (,, p—1
Vr (‘+

= )

— 2@, p—I 3 . J N
X VE+ R [1 - + . w—0 |t
_ 2 DVYD@E-—1y FYF— Dp—1y

4 2,
3 Vo R: 2R}
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We note that r3, ry, ... may be found from (10) by
equating coefficients, respectively, of Ko, Ko*, ...,
and by subsequently solving the equations obtained.

By replacing ry, ry, ... in (11) by expressions (14),
(15), ..., respectively, we obtain the solution of the
problem being examined in the form of a power series
in the dimensionless parameter Ko.

In the dimensionless variables, introduced by the
formulas

ra=Ryv, (n=0,1,2, ..), =147,
where t, = RY/D is a characteristic time, we have

vy =1,

v1=(u~—1)(r+ Vzn_

1/?),

+2[1———~““1»+3(u—1)]r~
T 4

2 — 1 1
— —I / _—— —1 2
3 r—Dr v 5 )r},
=14+ Kowv, 4 Ko?v, + Kadvy + ...
For large 1
v~1 +K0(;L——l)t——lé—K02(p——l)2t2+....

Thus, this method of expanding the solution in terms
of a small parameter and using a Laplace transforma-
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tion permits us to solve the equation giving the varia-
tion of water drop radius with fime for established tem-
perature.

NOTATION

m is the mass of a water drop; t is the time; D is
the diffusion coefficient for water vapor in air; S is
the surface area of a drop; p, is the density of water
vapor in the air; R is the drop radius; r is the spatial
coordinate; pg is the density of saturated vapor at the
droplet temperature; 7y is the density of the drop; Ko
is the dimensionless parameter; ¢ is the supersatura-
tion of the air by the water vapor; s is the Laplace
transformation variable; ry, (n=0,1,2,...) are the
coefficients in the expansion of the drop radius in
terms of powers of Ko; v is the dimensionless drop
radius; 7 is the dimensionless time; % is the charac-
teristic time.
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